A generic algorithm for sequential, rectangular, space filling layouts

Thomas Baudel*
IBM ILOG Center for Advanced Studies

ABSTRACT

We present a generic algorithm to sequentially pave a rectangular
area with smaller, fixed-surface, rectangles. The parameters of this
algorithm are functional, and it covers the full design space con-
sidered. This class of layouts is interesting, because it includes
all kinds of treemaps involving the placement of rectangles. For
instance, Slice and dice, Squarified, Strip and Pivot layouts are ob-
tained through various formulations of two simple chunking and
phrasing functions. Some new and potentially interesting layouts
which can be generated using our algorithm are introduced, such
as spiral treemaps and data dependent variations of known layout
strategies.

1 INTRODUCTION

There have been many attempts to describe the design-space of
treemaps and related space-filling layouts. [2] is one such early
but important attempt. A recent and broad survey of this design
space is provided in [3]. Focused on rectangular layouts, Slingsby
etal [4] propose a general technique to configuring such space fill-
ing layouts, from which we draw our structuring method. In all this
earlier work, though, the layout function that arranges the objects
on the plane is left as a black box method. Inspired by our earlier
work, Discovery [1], we propose here a finer-grained approach for
an important subclass of layout algorithms, whose design space is
covered by several simpler pure functions, assembled as the param-
eters of a generic, design-space-covering, algorithm.

The rectangular space filling problem. Our problem can be
expressed, formally, as follows:

e taking as input an ordered list L of n positive real values:
{a,b,c,...}, whose sum is equal to a number S.

e find a paving of the unit square [0,0,1,1] with n
non-overlapping, orthogonal, rectangles of surfaces
{a/S,b/S,c/S,...}.

e while maximizing a given objective function.

The output is a representation of L, expressed as a list of graphic
instructions for each element in L. It is produced through a succes-
sion of calls to a rendering function drawRect (x;,y;, wi, h;). Hence,
our algorithm can be characterized as a function that takes a list L
and a renderer R: layout_and_draw : L X R. The objective func-
tion defines, for a large part, the algorithm to apply. It is generally
a weighted sum of objectives involving criteria such as the aspect
ratio of the rectangles, the preservation of the input order or the
stability to resizing.

Sequential methods. Rather than tackling the full design
space of the algorithms that solve this problem, we focus on the
class of greedy methods, which we call the sequential layouts.
These methods are not allowed to use backtracking techniques of
unbounded depth. They can perform only a fixed number of passes

*e-mail: baudelth@fr.ibm.com
Te-mail: bertjan.broeksema@fr.ibm.com

Bertjan Broeksema®
IBM ILOG Center for Advanced Studies

ib)E A(E B

(@) ©) (d)

Figure 1: Stacking items in a block.

on the input set, partition the input set and apply to each partition
element a smaller space-filling layout method (divide and conquer
approach). This class of algorithms corresponds to the class of data-
linear visualizations [1], augmented with terminal recursion capa-
bility, and its maximal worst-case complexity is O(n?).

There are several reasons to restrict ourselves to this class:

e all widely known algorithms that pave rectangles belong to
this class: slice and dice, squarified, pivot layouts, as well
as many related visualizations such as mosaic displays and
various tree layouts.

e for further improvements, local search techniques provide a
simple technique to find local minima.

2 THE BLOCK DATA-STRUCTURE

Because the layout algorithm we consider is sequential, it can only
handle the elements in separate chunks containing at least one el-
ement. A block is a sub-rectangle in the bounding rect that con-
tains one or more elements. In the remainder, B denotes a list of
blocks that pave the bounding rect in L. Furthermore, b; denotes
the ith block (where 0 < i <= n). When max(i) = n, all elements
are laid out in separate blocks. Complementary, when max(i) = 1
all elements are laid out in one block that paves the full bounding
rectangle.

Once a block is laid out in the available space, no changes to
the aspect ratio or to the location of the block can be made. Con-
sequently, the way a block can be located in the available space
rectangle is strongly constrained. There are only four possible lo-
cations for a new block: the four sides of the rectangle representing
the available space. Additionally, newly created blocks must take
either full height and grow horizontally when elements are added
or vice-versa. Finally, elements can be stacked in various directions
inside a block. In horizontal blocks they can be either stacked from
left to right or vice versa. In vertical blocks they can be stacked
from top to bottom or vice versa. This brings the total number of
possible block configurations to eight.

Figure 1 demonstrates how elements are stacked in a block. The
block is placed on the left side of the available space rectangle,
and three out of six equally sized elements are added to the block.
Elements are stacked from bottom to top. The order of stacking is
depicted by color, going from black for the first to light gray for
the last element. In figure 1a, no element is added, hence the block
height is equal to the available space plane and its width is zero.
Next, in figure 1b the first element is added and the block now has
a width proportional to the size of the added element with respect
to overall size to be laid out. In figure 1c the second element is
added. The width of the block again grows proportionally, but the
height of the elements is reduced as they are stacked in the block.
Finally, figure 1d shows the result of adding yet another element

to the block. Assuming that figure 1d shows the final state of the
block, the available space would be reduced to [x : 0.5,y : O,w :
0.5,h:1].

3 PARAMETERIZING FUNCTIONS

Next we describe the functions that parametrize the algorithm. Be-
fore going into more detail on these functions we first introduce
the Context. The context stores local state information. In order to
keep the pseudo code readable, it is presented as an interface with
the functions that are required in our algorithm (i.e. score, phrase
and recurse) which can be implemented in different ways. In prac-
tice functors are used to implement the various variants of these
functions, which are set as function objects on the Context. For the
same reason the bookkeeping calls to the context (e.g. to notify that
a new block is started or that a level is fully laid out) are left out.
Calls to the functions in the context interface are passed on to these
functors. We now describe the three functions in more detail.

Chunking Given the list L, chunking is the process of deciding
whether the ith element gets added to block by or to block by 1.
This decision is made using a simple scoring function which takes
a block by, a size L[i] and returns a score s. Or more formally:
score : by x L[i] — s. When score(by, x L[i] <= score(b; x L[i —1])
then adding L[i + 1] to block by is an improvement of the layout.

Deciding whether or not an element must be added to the current
block can be based on various variables such as the ratio between
the number of elements in block b; with respect to the total number
of elements. An example is the MinAspectRatioScore implementa-
tion. It determines whether adding the next element either improves
or degrades the aspect ratio of the smallest element currently put in
the block.

Phrasing When a new block is started, the algorithm must de-
cide how the block will be laid out in the available space. Recall,
that a block must be placed along one of the four sides of the avail-
able space, and that a stack direction must be given as well. Those
two characteristics, taken together, form a block configuration. We
call phrasing the process of picking a configuration for each suc-
cessive block. Phrasing is again a simple function of the context
that takes the previous block b;_; and returns the block configura-
tion for block b;. That is, phrasing : b;_; — BlockCon figuration.
The first block is phrased according to the initial configuration set
in the context, which is one of the earlier mentioned eight possibil-
ities. Depending on the strategy, the next configuration can be de-
termined in a number of ways. We distinguish data dependent and
data independent phrasing strategies. The data independent strate-
gies are depicted in figure 2. The data dependent strategies choose
the next configuration based on the current situation.

Recurse After having isolated a block, the algorithm may de-
cide to recurse into the block, reapplying itself to further improve
the aspect ratio or other optimization goals. This feature allows
implementing the various types of pivot layouts.

4 ALGORITHM

Finally, we present the full algorithm in pseudo code as listed in
listing 1.

Listing 1: Complete algorithm to layout and draw a tree with usage
example

1 layout(L, C, BR){

2 b = new Block(C. initialConfiguration , BR)

3 B =new List(b)

4 int prevScore = inf

s for (int i =0; i <L.size(); ++) {

6 int curScore = C.score(b, L[i])

7 if (curScore > prevScore) { // Not an improvement:
8 if (C.recurse (b))

9 B.append(layout(b.items, C, b.rect))

v

(@)

()

Figure 2: Four data independent phrasing strategies to create a
space filling layout: (a) Strip; (b) Zigzag; (c) Spiral; and (d) Spikes.

10 else

11 B.append(b) // Accumulate block in result ,

12 b.reduce(BR) // Reduce the bounding rect such that b is excluded,
13 int nextConfiguration = C.phrase(b) // Start a new block.

14 b = new Block(nextConfiguration, BR);

16 b.add(L[i])

17 prevScore = curScore
18}

19 return B;

20 }

2 draw(C, L, R, BR) {
23 B=layout(L, C, BR)
4 foreach(b : B)

)

25 foreach(e : b)

26 R.drawRect(t, b. rectangle (e))

27}

28

29 layout.and_draw (L) { #/ Configuration for fig 2c
30 C = new Context()

31 C. initialConfiguration = LEFT_-TOP_TO.BOTTOM
32 C.chunking = new MinAspectRatioScore()
33 C.phrasing = new Spiral ()

34 BR = new Rectangle (0,0,1,1)

35 R = new Renderer()

36 draw(C, L, R, BR)

37}

5 CONCLUSION

We presented a generic algorithm that sequentially paves a rectan-
gular area with smaller, fixed-surface, rectangles. This class of lay-
outs is interesting, because, beyond encompassing simple grids, ta-
bles and trees, it also includes all kinds of treemaps. Our algorithm
is parametrized by two functions, score and phrase. These can be
implemented in various ways in order to reproduce well known ex-
isting layouts and a few new and potentially interesting layouts such
as spiral treemaps and data dependent variations of known treemap
layouts. As future work, we propose to show that this algorithm
covers the full design space of sequential, rectangular, space-filling
layouts.

REFERENCES

[1] T.Baudel. Browsing through an information visualization design space.
In CHI ’04 extended abstracts on Human factors in computing systems,
CHI EA ’04, pages 765-766, New York, NY, USA, 2004. ACM.

[2] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and
quantum treemaps: Making effective use of 2D space to display hierar-
chies. ACM Transactions on Graphics, 21(4):833-854, Oct. 2002.

[3] H.-J. Schulz, S. Hadlak, and H. Schumann. The Design Space of Im-
plicit Hierarchy Visualization: A Survey. IEEE transactions on visual-
ization and computer graphics, 17(4):393—411, May 2010.

[4] A. Slingsby, J. Dykes, and J. Wood. Configuring hierarchical layouts
to address research questions. IEEE transactions on visualization and
computer graphics, 15(6):977-84, 2009.

